• 🔥 Большое обновление PirateHUB Private!

    PirateHUB Private - закрытое сообщество PirateHUB, внутри которого:
    150+ приваток авторов по различным направлениям, 15+ совместных доступов, несколько сотен курсов в день от зарубежных авторов напрямую и многое другое. Нас уже почти 1000 человек!


    Что внутри + отзывы довольных участников:

    Ознакомиться

    *Анонсированы крупные обновления, не пропустите!

    ❗️Вход по старой цене открыт до 7 ноября включительно! Каждый участник получает бесплатный доступ к Web-Master Club от PirateHUB Academy и дополнительные бонусы!

Development [Coursea] Introduction to Deep Learning

5826fe5abb.jpg

DESCRIPTION:

The goal of this course is to give learners basic understanding of modern neural networks and their applications in computer vision and natural language understanding. The course starts with a recap of linear models and discussion of stochastic optimization methods that are crucial for training deep neural networks. Learners will study all popular building blocks of neural networks including fully connected layers, convolutional and recurrent layers.

Learners will use these building blocks to define complex modern architectures in TensorFlow and Keras frameworks. In the course project learner will implement deep neural network for the task of image captioning which solves the problem of giving a text description for an input image. The prerequisites for this course are: 1) Basic knowledge of Python. 2) Basic linear algebra and probability. Please note that this is an advanced course and we assume basic knowledge of machine learning. You should understand: 1) Linear regression: mean squared error, analytical solution. 2) Logistic regression: model, cross-entropy loss, class probability estimation. 3) Gradient descent for linear models. Derivatives of MSE and cross-entropy loss functions. 4) The problem of overfitting. 5) Regularization for linear models.

SALES PAGE:
DOWNLOAD:
 

Похожие темы

Назад
Сверху